QUATERNARY COMPOUNDS IN THE SYSTEM KC1/NaC1/MgC1₂?

H. FINK and H.J. SEIFERT Institute of Inorganic Chemistry, University Gh Kassel, FRG

ABSTRACT

In the ternary system KC1/NaC1/MgCl₂ an incongruently melting compound K₃NaMgCl₆ exists with the perfectic at 743K. It crystal-lizes in the hexagonal structure with a=1201 and c=1387pm. The analogous compounds K₃NaMCl₆ (M=Fe, Mn, V, Cd) are isotypic. The existence of the compound $0.5NaCl\cdotKCl\cdotMgCl₂$ could not be confirmed.

INTRODUCTION

By the reinvestigation of the binary system KC1/MgCl₂ the compound K_4 MgCl₆ (ref.1) was found, which crystallizes with the K_4 CdCl₆-structure (ref.2). In this type three K⁺-ions with the coordination number C.N.=8 and one K⁺-ion with C.N.=6 occupy two different positions. Thus a K⁺-ion can probably be replaced by a Na⁺-ion. The first known representative of such a group of compounds is K_3 NaFeCl₆ (ref.3), for which however the K⁺-parameters were incorrectly (ref.2) stated.

A reference to such a compound should expose the line H0 (fig.1) in the phase diagram of the already investigated system KCl/NaCl/ $MgCl_2$ (ref.4); this line was confirmed later on (ref.5), but not correctly explained. (The analogous line is contained in the corresponding Mn-system (ref.6)). But it must be noticed, that the ternary system is incomplete in consequence of missing compounds in the binary systems. These are the compounds K_4MgCl_6 , K_2MgCl_4 , $K_3Mg_2Cl_7$ in the system KCl/MgCl₂ (ref.1) and Na₆MgCl₈, NaMgCl₃ and Na₂Mg₃Cl₈ instead of NaMg₂Cl₅ in the system NaCl/MgCl₂ (ref.7). Recently Russian scientists (ref.8) mentioned an additional quaternary compound 0.5NaCl·KCl·MgCl₂. This compound is not contained in the section KMgCl₃/NaCl (fig. 1).

Fig. 1. System KCl/NaCl/MgCl₂ (ref.4)

EXPERIMENTAL

MgCl₂ was prepared by gradual heating of $NH_4MgCl_3 \cdot 6H_2O$ in a HCl-stream up to the melting point; KCl and NaCl were dried in a HCl-stream at 500°C. DTA-samples were melted in sealed quartz ampoules. - Powder patterns were taken using a goniometer equipped with a vacuum attachment. High-temperature patterns at varying temperatures were measured with a Simon-Guinier-camera. The galvanic cell for e.m.f.-measurements on solid electrolytes was previously described (ref.9).

RESULTS AND DISCUSSION

The existence of a compound 0.5NaCl·KCl·MgCl₂

A quasibinary section in a ternary system forms a simple eutectic system only when the saddlepoint lies exactly on the section. Small divergence may lead to a false interpretation. This occurs in the case of the section KMgCl₃/NaCl, which is obviously almost quasibinary, as can be seen in the phase diagram determined by DTA

(fig. 2): Below the strong eutectic effect at 678K there is a relatively weak thermal effect, which could belong to the ternary eutectic point I (fig. 1). (The effect at 578K is due to a phase transition of KMgCl₂.)

X-ray investigations confirm this observation Diffractometerdiagrams of the DTA-samples and the high-temperature Guinier-diagram, esnecially of the sample with 0.5NaCl/KCl/MgCl₂

up to 400° C, consist only of the KMgCl₃ - and NaCl-reflections. In fig. 3 a part of the Guinier-diagram is given.

Fig. 3. Guinier-diagram of '0.5NaCl·KCl·MgCl₂' (middle), X-ray-reflections of $K^{M}gCl_3$ (above) and NaCl (below)(all CuK α).

The existence of the compound K₃NaMgCl₆

Thermal effects of some samples
of the section KCl/NaMgCl ₃ are
listed in table 1. The temperatures
from cooling curves are given in
each case in the upper line, and
from heating curves taken after
annealing below. The omission of
the thermal effect at 400 ⁰ in the
heating curves with 20 and 25% is
due to the incongruently melting
compound K ₃ NaMgCl ₆ with the
peritectic at ~ 470°C.

Table	1.	Thermal	effe	ects
		measured	l bv	DTA.

mole-% NaMgCl ₃	T/OC		
20	591 597	426 466	408
25	541 545	449 470	402
30	499 -	439 471	397 398

The	stable	phases	in	the	solid	state	on	the	sectio	n KC	Cl/NaMg(C1 ₃ are:
	K ₃ NaMgC +	¹ 6			KMgC1	3 N	a 649	9C1 ₈	^{Na} 2 ^M +	gC1 ₄	ţ	
ксі	KCl	K ₃ Na!	MgC 1	6	NaC1		KMg(:1 ₃	КМg	C 1 3	NaMo	3 ^{C1} 31
0		2	5		50	5	4.6	5	66	.7		1
											- 1 - 0/ N-	M-01

mole%-NaMgCl_a

X-ray investigation of the DTA-samples confirm the new phases in addition to the known compounds (e.g. $0.5KC1+NaMgC1_3 \rightarrow 0.5KMgC1_3+$ $0.5Na_2MgC1_4$) of the binary systems (ref.7). The diffractometerdiagram of K₃NaMgCl₆ (fig. 4) agrees well with the calculated intensities using the following parameters: space group R3c (No.167); a=12.01Å, c=13.87Å; K in e with x=-0.384, Na in a, Mg in b, Cl in f with x=-0.016 y=-0.178 z=0.097.

Thermodynamic Data by EMF-Measurements

In the range from 25 to 50 mole-% $NaMgCl_3$ on the section $KCl/NaMgCl_3$, three solid phases - $KMgCl_3$, $K_3NaMgCl_6$ and NaCl - coexist (abbreviated K_3Na). In a galvanic cell for solid electrolytes $(C+Cl_2)/KCl/K^+$ -conducting glass/ $K_3Na/(C+Cl_2)$, an e.m.f. (E) is generated by the 'cell-reaction'

2KCl+NaCl+KMgCl₃=K₃NaMgCl₆

From the relation $\Delta G_R = -n \cdot F \cdot E(n = transported K^+=2;F=Faraday constant)$ the free enthalpy of reaction can be calculated. Its temperature dependence can be assumed to be linear, so that the Gibbs-Helmholtz equation $\Delta G_R = \Delta H_R - \Delta S_R \cdot T$ directly yields the enthalpy and entropy of the reaction as temperature-independent quantities.

198

 $\frac{\text{RESULT:}}{\text{This gives } \Delta G_R = \Delta H_R = -11.8 \text{ kJ} \cdot \text{mol}^{-1}, \text{ and } \Delta S_R = 0.$

Together with the free enthalpy for the reaction (ref.10) $KC1+MgC1_2=KMgC1_3 \Delta G_R(kJ/mole)=-8.7-9.0167T,$

 ΔG_R for the formation of $K_3 \operatorname{NaMgCl}_6$ from $3 \operatorname{KCl} + \operatorname{NaCl} + \operatorname{MgCl}_2$ can be calculated: $\Delta G_R(kJ/mole) = -21 - 0.0177T$ and $\Delta G_R(298K) = -26 kJ \cdot mol^{-1}$, which gives $\Delta H_R = -21 kJ \cdot mol^{-1}$ and $\Delta S_R = +17J \cdot K^{-1} \cdot mol^{-1}$.

Fig. 4. Observed (above) and calculated X-ray intensities

There is the question of whether a mixture of the quaternary

compound + KCl or K_4MgCl_6 + NaCl is stable at 20 mole-% NaMgCl_3. (ref.10) 4KCl+ MgCl_2 = $K_4MgCl_6 \qquad \Delta G_R(298K)=-20.7kJ\cdotmol^{-1}$ $3KCl+NaCl+MgCl_2=K_3NaMgCl_6 \qquad \Delta G_R(298K)=-26kJ\cdotmol^{-1}$ The subtraction of equation two from the first gives:

KCl+K₃NaMgCl₆=K₄MgCl₆+NaCl

 $\Delta G_{R}(298K) = +5.3 kJ \cdot mol^{-1}$

Table 2.

Because of the positive value of ΔG_R the phases (K₃NaMgCl₆+KCl) are stable at room temperature. This is confirmed by the X-ray investigations. Surprisingly for a cell KCl//22.5mole-% NaMgCl₃ a small e.m.f. of 2.0mV at 666K and 1.2mV at 611K was measured. This means that at higher temperatures a certain amount K₄MgCl₆ is stabilized by forming mixed-crystal with K₃NaMgCl₆.

Ana	ogous	compounds	

Individual samples of Peritectic temperatures and 3KC1/NaC1/MCl₂ (M=Fe, Mn, V, lattice constants |T·K⁻¹ || $a \cdot A^{-1} | c \cdot A^{-1}$ Cd) were investigated by DTA and X-ray. The temperatures of K₃NaMgC1₆ 743 12.01 13.87 the peritectic and the lattice K₃NaMnCl₆ 737 12.06 13.94 11.86³⁾ constants are listed in table 2. K₃NaFeC1₆ 13.86^{3} 693 (*The vanadium compound is formed K₃NaVCl₆ 860 12.01 13.84 by a solid state reaction.) K₃NaCdC1₆ 12.14 14.13 723

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

REFERENCES

1	H.J. Seifert and H. Fink, Proceed. 4th ICTA [Budapest], 1974,
	Vol. I, 367.
2	G. Bergerhoff and O. Schmitz-Dumont, Z. Anorg. Allg. Chem. 284
	(1956) 10.
3	À. Bellanca, Periodico Mineralog., 16 (1946), 199.
4	K. Scholich, Neues Jahrb. Min. Ğeol. Beil. Bd., 43 (1920) 251.
5	G.A. Abramov, Metallurg. [Moskva], 10 (1935) 82.
6	V.V. Safonov, B.G. Korshunov and L.N. Taranyuk, Zh. Neorg. Khim.
	13 (1968), 1950.
7	H.J. Seifert and H. Fink, Rev. Chem. miner., 12 (1975) 466.
8	A.I. Orekhowa, N.P. Podlesnyak, N.A. Krasil'nikova and E.I.
	Savinkova, Izv. Vyssh. Ucheb. Zaved., Cvet. metall., 1981,p.69.
9	H.J. Seifert and G. Thiel, J.Chem. Thermodyn. 14 (1982) 1159.

10 H.J. Seifert, unpublished.

200